If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+8x-100=0
a = 4.9; b = 8; c = -100;
Δ = b2-4ac
Δ = 82-4·4.9·(-100)
Δ = 2024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2024}=\sqrt{4*506}=\sqrt{4}*\sqrt{506}=2\sqrt{506}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{506}}{2*4.9}=\frac{-8-2\sqrt{506}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{506}}{2*4.9}=\frac{-8+2\sqrt{506}}{9.8} $
| 11+4x-2x=73-6 | | 6+9x=10+8x= | | 4x2+26x=-40 | | 12x+75=400 | | 40-(2+3)=2(c+6)+c | | 10b=8b+20-6 | | 4x-5=16+11x= | | -80=-6x+52x-8 | | y=200,000(1.32)^24 | | x.100=8 | | 4f−–3=15 | | 8m-40=48 | | v/12=3/7 | | 9,6x=96.000 | | 176/x=16 | | 9n+6=4(n+24) | | |9-4x|=-53 | | 200-2x-4.9x^2=0 | | 10x+16=6x-8= | | 12c-30=5(2c+28) | | -4(p+2)+8=2(p-1)-7p/15 | | 4x-8+4x+6x2=5(x-2) | | 10x=1=12x-13 | | 2(1/2x+1/4)+3x=2x-3/4 | | 3(w+7)=9w+33 | | 750-5x-4.9x^2=0 | | 6a–10=3a+17 | | 4m^2+25m-56=0 | | 13x+2x+5x+85=95 | | 1/3b=-9 | | 2x-15=-3x+20 | | 2(x/2+7)=12 |